Displaying posts tagged with

“Coriolus versicolor”

Effect of environmental conditions on biological decolorization of textile dyestuff by C. versicolor.

Effects of environmental conditions such as pH, media composition, carbon and nitrogen sources, TOC/N ratio, and dyestuff concentrations on decolorization of reactive phytalocyanin type textile dyestuff Everzol Turquoise Blue G by white rot fungi, Coriolus versicolor 20) or low nitrogen concentration was essential for effective decolorization of the dyestuff. Dyestuff concentration should be lower than 500 mg/l for complete decolorization. Only partial decolorization was observed for dyestuff concentrations above 500 mg/l. Adsorption of the dyestuff on surfaces of the fungi was insignificant (<20%).[…]

Generation of nuclear hybrids overcoming the natural barrier of incompatibility: transfer of nuclei from Lentinula edodes into protoplasts of Coriolus versicolor.

Heterokaryotic nuclear hybrids overcoming the natural barriers of incompatibility have been studied in basidiomycetes. To produce these nuclear hybrids between incompatible mushrooms, which have several potent pharmacological effects, nuclear transfer was performed between Lentinula edodes and Coriolus versicolor. Nuclei from serine auxotrophs of Lentinula edodes, LE207 (Ser-) were transferred into the protoplasts of arginine auxotrophs of Coriolus versicolor, CV17 (Arg-), using 30% polyethylene glycol 4000 in 10 mM CaCl2-glycine solution (pH 8.0). Nuclear transfer progenies were selected by nutritional complementation on minimal media supplemented with 0.6 M sucrose. The progenies were classified based on colony morphology to L. edodes-like, C. versicolor-like and non-parental type. Most of the progenies grew slower than either parent. The number of nuclei per cell was similar but the DNA content varied between progenies. The isozyme patterns of nuclear hybrids resembled either of the parent profiles or showed a mixed profile.[…]

Effect of ethanol on enzymatic activity of fungal laccases.

Blue laccase from Coriolus versicolor and blue and yellow laccases from Panus tigrinus were isolated, purified and studied in acetate buffer solutions, with and without addition of various amounts of ethanol, using syringaldazine and 2,6-dimethoxyphenol as substrates. Effect of ethanol on blue laccases could be successfully described using the mixed inhibition model, over the range of 0-2.5 M ethanol concentrations. Yellow laccase from P. tigrinus behaves differently, which may be explained by the presence of some extra molecules in its structure, which possibly stabilize the enzyme and might be exchanged in ethanol solutions.[…]

Susceptibility of natural killer (NK) cells to reactive oxygen species (ROS) and their restoration by the mimics of superoxide dismutase (SOD).

Natural killer (NK) cells are susceptible to reactive oxygen species (ROS), and lose the activity by the effects of ROS. Cancer bearing hosts usually suffer from oxidative stress (OS), and the NK-activity decreases to a significantly lower level than normal controls. Superoxide dismutase (SOD)-mimicking substances, such as protein-bound polysaccharide of Coriolus versicolor (Fr) QUEL (PSK) and iron-chelating chlorine e6-Na (FeCNa), can restore the NK-activity of cancer bearing hosts, when collaborating with catalase. Incorporation of 3H-thymidine by ROS-treated NK-cells is not affected, indicating that these cells are still active in the nucleic acid metabolism. Intraperitoneal administration of anti-Asialo GM1 antibody extinguished the NK-activity. NK-cells affected by ROS lost the adherence to target cancer cells in both in vitro and in vivo. ROS may change the surface charge of NK-cells to anionic, resulting in an inability of adhesion to target cancer cells which usually show the negative surface charge.[…]

Effect of polysaccharide krestin on glutathione peroxidase gene expression in mouse peritoneal macrophages.

Polysaccharide krestin (PSK) is a protein-bound polysaccharide extracted from the sporophore Coriolus versicolor. Previously, we found that PSK could reduce the oxidative injury that oxidised low-density lipoprotein (Ox-LDL) produced in monocytes/macrophages, and therefore have some pro-phylactic or therapeutic effect on atherosclerosis. Glutathione peroxidases, including selenium-dependent glutathione peroxidase (SeGPx) and non-selenium-dependent glutathione peroxidase (non-SeGPx, also called glutathione S-transferase [GST]), play an important role in the defence against oxidative injury. In order to find out if the effects of PSK were associated with antioxidant enzymes, we investigated its effect on glutathione peroxidase activity and messenger RNA (mRNA) expression in mouse peritoneal macrophages. Results showed that PSK enhanced SeGPx and non-SeGPx activity, and increased SeGPx and GST-P (pi class GST) mRNA in mouse peritoneal macrophages. In addition, the induction by PSK of the two glutathione peroxidases could be blocked by cycloheximide (30 micrograms/mL), but 5 micrograms/mL actinomycin D and 50 micrograms/mL acetovanilone (a superoxide inhibitor) had no effect. We conclude that PSK improved glutathione peroxidase activity through transcriptional induction of mRNA expression.[…]

Effect of spent cotton stalks on color removal and chemical oxygen demand lowering in olive oil mill wastewater by white rot fungi.

Wastewater from olive oil mill was decolorized (and its chemical oxygen demand reduced in static cultivation) using the fungi Coriolus versicolor, Funalia trogii, Phanerochaete chrysosporium and Pleurotus sajor-caju. The effect of cotton stalk on decolorizing and COD removing capability was demonstrated. P. chrysosporium (in 20% medium with cotton stalk) reduced the COD by 48% and color by 58%, F. trogii (in 30% medium with cotton stalk)) by 51 and 55%, respectively.[…]

Cell growth and gene modulatory activities of Yunzhi (Windsor Wunxi) from mushroom Trametes versicolor in androgen-dependent and androgen-insensitive human prostate cancer cells.

The incidence of prostate cancer varies greatly throughout the world; it is highest in African-Americans and lowest in the Asian populations of China, India, and Japan. Geographical differences in both prevalence of latent prostate cancer and mortality have been postulated to be influenced by diverse tumor-promoting and protective factors, both environmental and dietary. Prostate cancer is a tumor with an extremely long latency; the pattern of prostate tumorigenesis, in terms of the display and sequence of appearance of particular molecular or biochemical features, or morphological changes, characterizing different stages of the carcinogenic process, is expected to be heterogeneous. Some insights into tumor heterogeneity and progression can be obtained from studies using cell lines, particularly those derived from different anatomical sites. The present study aims to investigate whether hormone-responsive LNCaP and androgen-refractory JCA-1, PC-3, and DU-145 prostate cancer cells are responsive to Yunzhi (YZ), a proprietary dietary supplement prepared from extracts of Trametes versicolor, also known as Coriolus versicolor (a mushroom consumed by Chinese for its purported health benefits), and to elucidate its mechanism of action. Ethanolic extracts (70%) of YZ significantly reduced LNCaP cell growth, down-regulated the levels of secreted PSA, but had less effects on the expression of intracellular PSA and did not affect levels of the androgen receptor. In androgen-unresponsive prostate cancer cells, YZ had a much less pronounced suppressive effect on proliferation of PC-3 and DU-145 cells, compared to LNCaP, and was inactive against JCA-1 cells. Western blot analyses show that the expression of Rb, a key regulatory protein in G1/S transition, and PCNA, integrally involved in mammalian cell DNA replication, were significantly reduced by treatment with YZ in PC-3 and DU-145 cells, respectively. In contradiction, none of these biochemical parameters were affected in JCA-1 cells under identical treatment conditions. Further analysis shows that YZ increased the levels of signal transducer and activator family of transcription factors STAT 1 and STAT 3 in JCA-1 and not LNCaP cells. The greater sensitivity of LNCaP cells to this polysaccharopeptide raises the possibility that YZ may be considered as an adjuvant therapy in the treatment of hormone responsive prostate cancer; additionally, it may have chemopreventive potential to restrict prostate tumorigenic progression from the hormone-dependent to the hormone-refractory state.[…]

Evaluation of solid substrates for enzyme production by Coriolus versicolor, for use in bioremediation of chlorophenols in aqueous effluents.

In the development of a system for the removal of chlorophenols from aqueous effluents, a range of solid substrates for the growth of Coriolus versicolor were investigated. Substrates included wood chips, cereal grain, wheat husk and wheat bran. Suitability for transformation of chlorophenols depended on laccase production by the fungus. The greatest amount of laccase (90% removal of chlorophenols within 100 min.[…]

Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil.

Four white-rot fungi (Phanerochaete chrysosporium IMI 232175, Pleurotus ostreatus from the University of Alberta Microfungus Collection IMI 341687, Coriolus versicolor IMI 210866 and Wye isolate #7) and all possible combinations of two or more of these fungi, were incubated in microcosms containing wheat straw and non-sterile coal-tar contaminated soil to determine their potential to degrade polycyclic aromatic hydrocarbons (PAHs). Biotic and abiotic controls were prepared similarly and PAH concentrations remaining in each microcosm were determined after 8, 16 and 32 weeks by GC-MS following extraction with dichloromethane. The greatest PAH losses were in the biotic control, compared to small or negligible differences in microcosms inoculated with one or more fungi. These results suggest that in the biotic control native microorganisms colonised the straw added as organic substrate and degraded PAH as an indirect consequence of their metabolism. By contrast, in other microcosms, colonisation of straw by the natural microflora was inhibited because the straw was previously inoculated with fungi. Soil cultures prepared at the end of the experiment showed that though introduced fungi were still alive, they were unable to thrive and degrade PAH in such a highly contaminated soil and remained in a metabolically inactive form.[…]

Primary structure deduction and molecular modelling from a cDNA of a cellobiohydrolase-like protein from the white-rot fungus Coriolus versicolor.

Molecular cloning and cDNA sequencing analysis were used to elucidate the primary structure of a cellulase-like structure from the white-rot fungus Coriolus versicolor. The cDNA of interest was isolated from a cDNA library obtained from C. versicolor mycelia grown on cellulase inducer medium. A pattern search showed that this cellulase belongs to the glycosyl hydrolases family 6. From the deduced amino acid sequence, models of the binding and catalytic domains were built by homology modelling. The constructed models present a typical cellulose-binding domain at the N-terminal region, a rich Pro, Ser, Thr linker peptide, and a catalytic domain at the C-terminus region.[…]