Category Archives: Medical Studies

Fungicidal value of wood tar from pyrolysis of treated wood.

Mazela B.

Institute of Chemical Wood Technology, Agricultural University of Pozna?, Wojska Polskiego 38/42, PL-60637 Pozna?, Poland. bartsimp@au.poznan.pl

Abstract

The objective of the paper was to estimate the fungicidal value of wood tar extracted as a product of pyrolysis of wood previously treated with either creosote oil or CCB-type salt preservative. The effectiveness of wood treated with one of these two wood tar residuals was compared to the effectiveness of wood treated with virgin creosote oil (type WEI-B) and an untreated control. Wood was impregnated with alcohol solutions of the two extracted preservatives or virgin creosote oil and then subjected to the Coniophora puteana, Poria placenta and Coriolus versicolor fungi. The fungicidal values of the investigated preservatives were determined with the use of the short agar-block method and the aging test according to the standard EN 84. It was found that wood tar extracted by pyrolysis of old creosote-treated wood and then used to treat wood may have potential as a preservative for wood protection or as a component of preservatives.

PMID: 17011772 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/17011772

Biocontrol of wood-rotting fungi with Streptomyces violaceusniger XL-2.

Shekhar N, Bhattacharya D, Kumar D, Gupta RK.

School of Biotechnology, GGS Indraprastha University, Delhi, India.

Abstract

During the previous decade, chitinases have received increased attention because of their wide range of applications. Chito-oligomers produced by enzymatic hydrolysis of chitin have been of interest in recent years because of their broad applications in medical, agricultural, and industrial applications, such as antibacterial, antifungal, hypo cholesterolemic, and antihypertensive activity, and as food quality enhancer. Fungal cell walls being rich in chitin also enable the use of chitinases in biocontrol of fungal pathogens, as bio-fungicides. An actinomycete was isolated from the bark of trees of Dehradun in India and was later identified as Streptomyces violaceusniger. This strain exhibits strong antagonism towards various wood-rotting fungi, such as Phanerochaete chrysosporium, Postia placenta, Coriolus versicolor, and Gloeophyllum trabeum. Further, studies showed an extracellular bioactive compound was responsible for the antagonism. The conditions for the production of this biocontrol agent were optimized, and the effects of various stress factors (like nitrogen-deficient media, carbon-deficient media, etc.) were studied. The presence of chitin in the growth media was found to be an essential factor for the active production of the biocontrol agent. The pH and temperature optima for the biocontrol agent were determined. Purification and characterization of this specific biocontrol agent was performed through anion exchange chromatography using a DEAE-cellulose column, and a single protein band was obtained on a 10% sodium dodecyl sulfate-polyacrylamide gel. The protein was later identified as a 28 kDa endo chitinase by MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) and by a chitobiose activity assay.

PMID: 17110971 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/17110971

Effects of polysaccharide peptides from COV-1 strain of Coriolus versicolor on glutathione and glutathione-related enzymes in the mouse.

Yeung JH, Or PM.

Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China. johnyeung@cuhk.edu.hk

Abstract

The effects of polysaccharide peptide (PSP), an immunomodulator isolated from Coriolus versicolor COV-1, on glutathione (GSH) and GSH-related enzymes was investigated in C57 mouse. Administration of PSP (1-4 micromole/kg, i.p.) produced a transient, dose-dependent depletion (10-37%) of hepatic GSH, with no effect on serum glutamic-pyruvic transaminase (SGPT) activity. Blood GSH was depleted (6-25%) at 3 h, followed by a rebound increase above the control GSH level (20%) at 18 h. The GSSG/GSH ratio, a measure of oxidative stress, was increased 3 h after PSP treatment but returned to normal levels at 24 h. Sub-chronic treatment of PSP (1-4 micromole/kg/day, i.p.) for seven days did not produce any significant changes in hepatic GSH levels and the GSSG/GSH ratio when measured 24 h after the final dose of PSP. PSP had little effect on glutathione transferase (GST), glutathione reductase (GSSG reductase) and glutathione peroxidase (GPX) activities in the liver. However, a dose-dependent increase in blood GPX activity (30-48%) was observed at 3h, which coincided with the increase in the GSSG/GSH ratio. The increase in blood GPX activity may be a responsive measure to deal with the transient oxidative stress induced by PSP treatment. The results showed that PSP only caused a transient perturbation on hepatic glutathione without affecting the GSH-related enzymes such as GST, GSSG reductase and GPX. The observed changes in blood GSH simply reflected the intra-organ translocation of glutathione, as the glutathione-related enzymes were not significantly affected by PSP treatment.

PMID: 17240508 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/17240508

Characterisation and bioactivity of protein-bound polysaccharides from submerged-culture fermentation of Coriolus versicolor Wr-74 and ATCC-20545 strains.

Cui J, Goh KK, Archer R, Singh H.

Riddet Centre, Massey University, Private Bag 11 222, Palmerston North, New Zealand.

Abstract

The protein-bound polysaccharides of Coriolus versicolor (CPS) have been reported to stimulate overall immune functions against cancers and various infectious diseases by activating specific cell functions. A New Zealand isolate (Wr-74) and a patented strain (ATCC-20545) of C. versicolor were compared in this study. The fruit bodies of both strains were grown for visual verification. Both strains were grown in submerged-culture using an airlift fermentor with milk permeate as the base medium supplemented with glucose, yeast extract and salt. Metabolic profiles of both strains obtained over 7-day fermentation showed very similar trends in terms of biomass production (8.9-10.6 mg/ml), amounts of extracellular polysaccharide (EPS) from the culture medium (1150-1132 microg/ml), and intracellular polysaccharide (IPS) from the mycelium (80-100 microg/ml). Glucose was the dominant sugar in both EPS and IPS, and the polymers each consisted of three molecular weight fractions ranging from 2 x 10(6) to 3 x 10(3 )Da. Both the EPS and IPS were able to significantly induce cytokine production (interleukin 12 and gamma interferon) in murine splenocytes in vitro. Highest levels of interleukin 12 (291 pg/ml) and gamma interferon (6,159 pg/ml) were obtained from samples containing Wr-74 IPS (0.06 microg/ml) and ATCC 20545 IPS (0.1 microg/ml), respectively. The results indicated that lower levels of EPS and IPS generally resulted in higher immune responses than did higher polymer concentrations.

PMID: 17318488 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/17318488

Salidroside production by hairy roots of Rhodiola sachalinensis obtained after transformation with Agrobacterium rhizogenes.

Zhou X, Wu Y, Wang X, Liu B, Xu H.

Institute of Genetics and Physiology, Jilin Normal University, Siping, Jilin 136000, China.

Abstract

Hairy roots induced by Agrobacterium rhizogenes grow faster, and are considered as genetically stable. These hairy roots can be used as an interesting material for the production of secondary metabolites of pharmaceutical value. Salidroside has been identified as the major compounds from the roots of Rhodiola sachalinensis A. BOR. Here, we provide an update that adds new perspectives on the prospects and challenges of producing Salidroside from hairy roots induced by Agrobacterium rhizogene in Rhodiola sachalinensis A. BOR. For high salidroside production, the optimal concentration for precursor (Tyrosol, Tyrosine, and Phenylalanine) and elicitor (Aspergillus niger, Coriolus versicolor, and Ganoderma lucidum) was added in the LB liquid medium, respectively. The addition of elicitor in the liquid MS medium and the utilization of precursor from chemical feeding enhanced biomass accumulation and salidroside production. The optimal concentration for elicitor and precursor in the liquid medium was 0.05 mg/l and 1 mmol/l, respectively.

PMID: 17329834 [PubMed – indexed for MEDLINE]Free Article

http://www.ncbi.nlm.nih.gov/pubmed/17329834

In vivo effect of I’m-Yunity on hepatic cytochrome P450 3A4.

Nicandro JP, Tsourounis C, Frassetto L, Guglielmo BJ.

Dept of Clinical Pharmacy, University of California, San Francisco, CA 94143, USA. ps01459@itsa.ucsf.edu

Abstract

The inhibition or induction of hepatic cytochrome P450 3A4 (CYP3A4) enzyme associated with herbal medicines such as I’m-Yunity (Coriolus versicolor) can result in clinically significant herb-drug interactions. The active ingredient of I’m-Yunity is believed to be polysaccharopeptide polymer (PSP). Drug interactions between I’m-Yunity and other medications or supplements are yet to be investigated. The objective of this single-treatment, one-period, three-phase, open-labeled study was to evaluate the ability of I’m-Yunity to inhibit or induce CYP3A4 in 12 healthy adult volunteers (8 women and 4 men) aged between 23 and 54 years through the use of a CYP3A4-specific assay, the erythromycin breath test (EBT). EBT measurements are reported as percentage of 14C-Erythromycin metabolized/hr. Participants were given a 14-day supply of I’m-Yunity and instructed to take 1200 mg, three times daily with meals. Comparisons of all subjects’ mean CYP3A4 activities were performed with the EBT before and after taking I’m- Yunity. Results revealed a mean EBT change (SD) from baseline of 0.08% (0.56%) 14C-Erythromycin metabolized/hr, which was not significant (p = 0.63). Therefore, 14 days of exposure to I’m-Yunity was not associated with clinically significant CYP3A4 inhibition or induction, suggesting that short-term administration of I’m-Yunity with medications primarily metabolized by CYP3A4 is safe and not expected to be associated with significant herb-drug interactions. However, it is still unknown whether interactions exist between I’m-Yunity and other medications metabolized by other CYP450 isozymes or enzyme/transporter systems.

PMID: 17594986 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/17594986

Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis.

Zhang X, Xu C, Wang H.

College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China. zhangxiaoyu@mail.hust.edu.cn

Abstract

Pretreatment by a white-rot fungus Coriolus versicolor B1 under different conditions and saccharification of bamboo were investigated. The saccharification rate was significantly enhanced and a maximum saccharification rate of 37.0% was achieved after pretreatment. Reducing sugars yield was 223.2 mg/g of bamboo residues, which was 2.34 times that of the raw material. It was feasible to treat bamboo residues with B1 for the saccharification of bamboo.

PMID: 17884661 [PubMed – indexed for MEDLINE]Free Article

http://www.ncbi.nlm.nih.gov/pubmed/17884661

Desorption of zinc by extracellularly produced metabolites of Trichoderma harzianum, Trichoderma reesei and Coriolus versicolor.

Adams P, Lynch JM, De Leij FA.

School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey, UK.

Abstract

AIMS: To determine the role of fungal metabolites in the desorption of metals.

METHODS AND RESULTS: Desorption of Zn from charcoal by three different fungi was compared against metal desorption with reverse osmosis water, a 0.1% Tween 80 solution and a 0.1 mol l(-1) CaCl(2) solution. All three fungal filtrates desorbed three times more Zn than either 0.1% Tween 80 or 0.1 mol l(-1) CaCl(2). Metal chelator production in Trichoderma harzianum and Coriolus versicolor was constitutively expressed while chelator production in Trichoderma reesei was induced by Zn. The presence of Zn inhibited the production of metal chelators by C. versicolor. Only C. versicolor was found to produce oxalic acid (a strong metal chelator). All fungi caused a marked decrease in pH, although this was not enough to explain the increased desorption of the metals by the different fungal filtrates.

CONCLUSIONS: Metal chelation via organic acids and proteins are the main mechanisms by which the fungal filtrates increase zinc desorption.

SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study explain why plants inoculated with T. harzianum T22 take up more metal from soil, than noninoculated plants while metabolites produced by fungi could be used for metal leaching from contaminated soils.

PMID: 18045407 [PubMed – indexed for MEDLINE]

https://mushroomstudies.co/wp-admin/post-new.php

[Coriolus versicolor–innovation in prevention of oncogynecological diseases, especially HPV]

Akush Ginekol (Sofiia). 2008;47 Suppl 3:51-3.

[Article in Bulgarian]

Bogdanova J.

Abstract

Coriolus-MRL is a nutrient adjuvant, which contains biomass of the fungus Coriolus versicolor and is studied to reverse early stages of cervical cancer and to reduce risk factors of reoccurring HPV virus.

PMID: 19449722 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/19449722

Biological activity, structural features, and synthetic studies of (-)-ternatin, a potent fat-accumulation inhibitor of 3T3-L1 adipocytes.

Shimokawa K, Mashima I, Asai A, Ohno T, Yamada K, Kita M, Uemura D.

Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan.

Abstract

A series of studies, including preliminary screening, isolation, structure determination, synthesis, and biological evaluation, of (-)-ternatin (1) are described. A highly N-methylated cyclic heptapeptide isolated from the mushroom Coriolus versicolor, 1 shows an inhibitory effect on fat accumulation by 3T3-L1 murine adipocytes (EC50 = 0.02 microg mL(-1)). Detailed analysis of 1D and 2D NMR spectra, as well as amino acid analysis, suggested four stereoisomers as candidates for 1. For the complete structural elucidation of 1, chemical syntheses were carried out by solid-phase peptide synthesis. By comparing the spectroscopic data for the natural product with the data for the synthetic stereoisomers, the structure of 1 was confirmed to be cyclo[D-allo-Ile1-L-(NMe)Ala2-L-(NMe)Leu3-L-Leu4-L-(NMe)Ala5-D-(NMe)Ala6-(2R,3R)-3-hydroxy-Leu7].

PMID: 18181124 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/18181124