Enhanced production of laccase from Coriolus versicolor NCIM 996 by nutrient optimization using response surface methodology.

Arockiasamy S, Krishnan IP, Anandakrishnan N, Seenivasan S, Sambath A, Venkatasubramani JP.

Department of Biotechnology, Kalasalingam University, Krishnankoil, Tamil Nadu, India. asanthiagu@rediffmail.com

Abstract

Plackett and Burman design criterion and central composite design were applied successfully for enhanced production of laccase by Coriolus versicolor NCIM 996 for the first time. Plackett and Burman design criterion was applied to screen the significance of ten nutrients on laccase production by C. versicolor NCIM 996. Out of the ten nutrients tested, starch, yeast extract, MnSO(4), MgSO(4) x 7H(2)O, and phenol were found to have significant effect on laccase production. A central composite design was applied to determine the optimum concentrations of the significant variables obtained from Plackett-Burman design. The optimized medium composition for production of laccase was (g/l): starch, 30.0; yeast extract, 4.53; MnSO(4), 0.002; MgSO(4) x 7H(2)O, 0.755; and phenol, 0.026, and the optimum laccase production was 6,590.26 (U/l), which was 7.6 times greater than the control.

PMID: 18459071 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Krishnan%20IP%22[Author]

Biomimetic synthesis and characterisation of protein capped silver nanoparticles.

Sanghi R, Verma P.

Facility for Ecological and Analytical Testing, Indian Institute of Technology Kanpur, Kanpur, India. rsanghi@iitk.ac.in

Abstract

A controlled and up-scalable route for the biosynthesis of silver nanopartilces (NPs) mediated by fungal proteins of Coriolus versicolor has been undertaken for the first time. The fungus when challenged with silver nitrate solution accumulated silver NPs on its surface in 72h which could be reduced to 1h by tailoring the reaction conditions. Under alkaline conditions, the reaction was much faster and could easily proceed at room temperature even without stirring. The resulting Ag NPs displayed controllable structural and optical properties depending on the experimental parameters such as pH and reaction temperatures. The average size, morphology, and structure of particles were determined by AFM, TEM, XRD and UV/Visible absorption spectrophotometry. Fourier transform infrared study disclosed that the amino groups were bound to the particles, which was accountable for the stability of NPs. It further confirmed the presence of protein as the stabilizing and capping agent surrounding the silver NPs. Experiments were conducted both with, media in which fungus was initially harvested and that of pristine fungal mycelium alone. Under normal conditions, in the case of media extracellular synthesis took place whereby other than the fungal proteins, glucose was also responsible for the reduction. In the case of fungal mycelium, the intracellular formation of Ag NPs, could be tailored to give both intracellular and extracellular Ag NPs under alkaline conditions whereby the surface S-H groups of the fungus played a major role.

http://www.ncbi.nlm.nih.gov/pubmed/18625550

Evaluation of widely consumed botanicals as immunological adjuvants.

Ragupathi G, Yeung KS, Leung PC, Lee M, Lau CB, Vickers A, Hood C, Deng G, Cheung NK, Cassileth B, Livingston P.

Laboratory of Tumor Vaccinology, Melanoma and Sarcoma Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States. ragupatg@mskcc.org

Abstract

BACKGROUND: Many widely used botanical medicines are claimed to be immune enhancers. Clear evidence of augmentation of immune responses in vivo is lacking in most cases. To select botanicals for further study based on immune enhancing activity, we study them here mixed with antigen and injected subcutaneously (s.c.). Globo H and GD3 are cell surface carbohydrates expressed on glycolipids or glycoproteins on the cell surface of many cancers. When conjugated to keyhole limpet hemocyanin (KLH), mixed with an immunological adjuvant and administered s.c. the magnitude of the antibody responses against globo H, GD3 and KLH depend largely on the potency of the adjuvant. We describe here the results obtained using this s.c. immunization model with seven botanicals purported to have immune stimulant effects.

METHODS: Groups of 5-10 mice were immunized with globo H-KLH or GD3-KLH mixed with botanical, saline or positive control immunological adjuvant, s.c. three times at 1 week intervals. Antibody responses were measured 1 and 2 weeks after the 3rd immunization. The following seven botanicals and fractions were tested: (1) H-48 (Honso USA Co.), (2) Coriolus versicolor raw water extract, purified polysaccharide-K (PSK) or purified polysaccharide-peptide (PSP) (Institute of Chinese Medicine (ICM)), (3) Maitake extract (Yukiguni Maitake Co. Ltd. and Tradeworks Group), (4) Echinacea lipophilic, neutral and acidic extracts (Gaia Herbs), (5) Astragalus water, 50% or 95% ethanol extracts (ICM), (6) Turmeric supercritical (SC) or hydro-ethanolic (HE) extracts (New Chapter) or 60% ethanol extract (ICM) and (7) yeast beta-glucan (Biotec Pharmacon). Purified saponin extract QS-21 (Antigenics) and semisynthetic saponin GPI-0100 (Advanced BioTherapies) were used as positive control adjuvants. Sera were analyzed by ELISA against synthetic globo H ceramide or GD3 and KLH.

RESULTS: Consistent significant adjuvant activity was observed after s.c. vaccination with the Coriolus extracts (especially PSK), a 95% ethanol extract of Astragalus and yeast beta-glucan, and (to a lesser extent) Maitake. Antibodies against KLH in all cases and against globo H in most cases were induced by these botanicals. Little or no adjuvant activity was demonstrated with H-48 or Echinacea extracts or the Astragalus water extract. Experiments with GD3-KLH as immunogen confirmed the adjuvant activity of the Coriolus, yeast beta-glucan and Astragalus extracts. While extraction with ethanol concentrated the active ingredients in Astragalus, it had no impact on Coriolus where the 90% ethanol precipitate and solute were equally active.

CONCLUSIONS: Some, but not all, botanicals purported to be immune stimulants had adjuvant activity in our model. PSK and Astragalus were surprisingly active and are being further fractionated to identify the most active adjuvant components.

PMID: 18640165 [PubMed – indexed for MEDLINE]PMCID: PMC2565601

http://www.ncbi.nlm.nih.gov/pubmed/18640165

Synthesis and evaluation of N-alkyl-beta-D-glucosylamines on the growth of two wood fungi, Coriolus versicolor and Poria placenta.

Muhizi T, Coma V, Grelier S.

UMR US2B, Unité des Sciences du Bois et des Biopolymères, Université Bordeaux 1, INRA, CNRS, 351, cours de la Libération F-33405 Talence, France.

Abstract

Various glucosylamines were synthesized from glucose and different alkyl amine compounds. These amino compounds are beta-D-glucopyranosylamine (GPA), N-ethyl-beta-D-glucopyranosylamine (EtGPA), N-butyl-beta-D-glucopyranosylamine (BuGPA), N-hexyl-beta-D-glucopyranosylamine (HeGPA), N-octyl-beta-D-glucopyranosylamine (OcGPA), N-dodecyl-beta-D-glucopyranosylamine (DoGPA), N-(2-hydroxyethyl)-beta-D-glucopyranosylamine (HEtGPA) and N,N-di(2-hydroxyethyl)-beta-D-glucopyranosylamine (DHEtGPA). They were tested for their antifungal activity against the growth of Coriolus versicolor and Poria placenta. An improvement of the antifungal activity with the increase of alkyl chain length was observed. DoGPA exhibited the best antifungal activity against both strains. It completely inhibited the fungal growth at 0.01×10(-3)molmL(-1) and 0.0075×10(-3)molmL(-1) for C. versicolor and P. placenta, respectively. For other glucosylamines higher concentrations were needed for complete inhibition of fungi.

PMID: 18694571 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/18694571

Production and structural analysis of the polysaccharide secreted by Trametes (Coriolus) versicolor ATCC 200801.

Rau U, Kuenz A, Wray V, Nimtz M, Wrenger J, Cicek H.

Institute of Biochemistry and Biotechnology, Technical University Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany. U.Rau@tu-bs.de

Abstract

Trametes versicolor ATCC 200801 secretes 4.1 g L(-1) of exopolysaccharide (EPS) when synthetic minimal medium and low-shear bioreactor cultivation technique are used. Structural and compositional analyses by thin layer chromatography, gas chromatography-mass spectrometry, electrospray ionization tandem mass spectrometry, and nuclear magnetic resonance spectroscopy yielded predominantly glucose and small amounts of galactose, mannose, arabinose, and xylose. The main EPS is composed of beta-1,3/beta-1,6-linked D-glucose molecules which is identical with Schizophyllan but does not possess a triple helical arrangement as secondary structure. Two molar mass fractions were detected by size exclusion chromatography yielding weight-average molecular weights of 4,100 and 2.6 kDa. Protein content varies between 2-3.6% (w/w). The exopolysaccharide is different in the nature of the glycosidic linkage, composition of monosaccharides, protein content, and weight-average molecular weight compared to the well-known polysaccharopeptide (PSP) and polysaccharopeptide Krestin (PSK).

PMID: 18800181 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/18800181

Immune System Genes Show Links to Type 1 Diabetes – By Serena Gordon, HealthDay Reporter

WEDNESDAY, Sept. 8 (HealthDay News) — The exact cause of type 1 diabetes is still unknown, but international researchers have found a link between the blood sugar disorder and a network of immune system genes.

Using a genome-wide association study, the researchers found that a certain group of genes that react in response to viral infections were present in both rats and humans, and that those same genes were also associated with a susceptibility to type 1 diabetes.

“Diseases arise as a result of many genetic and environmental factors through gene networks that cause tissue damage,” explained study senior author Dr. Stuart Cook, the group head of molecular and cellular cardiology at the Medical Research Council Clinical Sciences Centre, and a professor of clinical and molecular cardiology at Imperial College in London.

“We used an approach to identify the major control points’ central command of an inflammatory gene network. This led us to uncover hundreds of new genes that might cause diabetes and one major control gene that controls the whole network,” said Cook.

He added that one of the genes belongs to a class of genes that might make a good target for drug therapy in the future.

Results of the study are published in the Sept. 9 issue of Nature.

Each year, more than 30,000 people are diagnosed with type 1 diabetes, formerly known as juvenile diabetes, according to the Juvenile Diabetes Research Foundation (JDRF). People with type 1 diabetes no longer produce enough of the hormone insulin to effectively use the sugars found in carbohydrate-containing foods. To survive, people with type 1 diabetes must take insulin injections or use an insulin pump for the rest of their lives.

Experts believe the disease is an autoimmune disease, which means that the body’s immune system mistakenly turns against healthy cells, such as the insulin-producing cells in the pancreas, and destroys them. People who develop type 1 diabetes are believed to have a genetic susceptibility to the disease that’s then triggered by something in the environment, possibly a virus.

In the current study, the researchers didn’t initially set out to look for type 1 diabetes genes. They started out by looking at a certain group of genes in rats, in this case a network of genes controlled by a gene called interferon regulatory factor 7 (IRF7). IRF7 is like a master switch that controls the genes in its network. The entire network of genes controlled by IRF7 is called the IRF7-driven inflammatory network (IDIN).

The researchers discovered that when there were differences in IRF7, there were also differences in the way other genes expressed themselves.

Cook and his colleagues then searched for a network of genes in humans that might behave the same way. They found an area on chromosome 13q32 that is controlled by a gene called the “Epstein-Barr virus induced gene 2” (Ebi2). This gene appeared to be the human equivalent of the IRF7 gene in rats.

Within this human version of the IDIN, research found a gene called IFIH1, which has been found in other research to be associated with the development of type 1 diabetes.

“Usually, research starts from the genetics and goes to function. Here, they started with a function — [an immune system reaction] — and were looking for a gene,” explained Marie Nierras, director of research and scientific affairs for the JDRF.

“The value of such a result is that if you can get to the same place using more than one pathway, it tends to support the hypothesis,” she said.

In this case, the hypothesis supported is the idea that type 1 diabetes may be triggered by an immune system response to a virus. However, Nierras stressed that this study doesn’t conclusively prove that a virus is the trigger for type 1 diabetes.

“We know better today that this network of genes is involved, and with a network, you have many targets you can test. This research invites us to plan experiments going forward, and opens up many more questions, like ‘If I disrupt this branch of the network, do I disrupt diabetes?’ Or, ‘If you look back at previous research knowing this study’s results, does that help to better explain previous results?'” said Nierras.

Cook said this type of genome-wide association study can be used for other diseases as well, and that his team is hoping to eventually develop a new drug based on the genetic target they discovered.

More information

Learn more about type 1 diabetes and its causes from the U.S. National Library of Medicine.

SOURCES: Stuart Cook, M.D., Ph.D., group head, molecular and cellular cardiology, the Medical Research Council Clinical Sciences Centre, and professor, clinical and molecular cardiology, Imperial College, London; Marie Nierras, Ph.D., director, research and scientific affairs, Juvenile Diabetes Research Foundation, New York City; Sept. 9, 2010, Nature

Copyright © 2010 HealthDay. All rights reserved.

 http://www.businessweek.com/lifestyle/content/healthday/642915.html

Protein-bound polysaccharide-K (PSK) directly enhanced IgM production in the human B cell line BALL-1

Maruyama S, Akasaka T, Yamada K, Tachibana H.

Laboratory of Food Chemistry, Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka, Japan. marushins2003@ybb.ne.jp

Abstract

Protein-bound polysaccharide-K (PSK) prepared from the basidiomycete Coriolus versicolor has been used as a biological response modifier for the treatment of cancer patients. Many studies describing the immunomodulatory effects and direct anti-cancer effects of PSK have been reported. Most of studies describing the immunomodulatory effects focused on cellular immunity, although there were several studies which focused on humoral immunity where PSK was shown to be able to induce antibody production in vivo. However, even in these humoral immunity studies, it is thought that the enhancement of antibody production was due to the activation of cellular immunity. In this study, we investigated the direct effect of PSK on B cells and discovered that PSK was able to enhance IgM production in the human B cell line BALL-1. Furthermore, BALL-1 was shown to have the characteristic features of B-1a cells, which are independently involved in the primary immune response. These results show that there is a possibility that PSK directly acts on B cells and simultaneously enhances both humoral immunity and cellular immunity.

PMID: 18848763 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/18848763

Polysaccharopeptide mimics ciclosporin-mediated Th1/Th2 cytokine balance for suppression of activated human T cell proliferation by MAPKp38 and STAT5 pathways.

Lee CL, Sit WH, Jiang PP, So IW, Wan JM.

School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China.

Abstract

The activation of T helper (Th) cell subsets plays an important role in the human immune system. Uncontrolled Th1 and Th2 responses lead to autoimmune and inflammatory diseases, respectively. The identification of agents that modulate the Th1/Th2 cytokines is therefore essential for controlling these diseases. We recently reported that polysaccharopeptide (PSP) from Coriolus versicolor exhibited ciclosporin-like activities to control aberrant T lymphocyte activation. Here, we compared the properties of PSP with ciclosporin on cell proliferation, CD25+ expression, secretion of Th1/Th2 cytokines and activation of mitogen-activated protein kinase (MAPK)p38 and signal transducers and activators of transcription 5 (STAT5) on T cells. The data show that PSP alone suppresses the proliferation of activated T cells. PSP exhibited similar and additive inhibitory effects to ciclosporin to suppress activated T cell proliferation, Th1 cytokines and reduce CD3+/CD25+ cell expression, but not Th2 cytokine expression, which helps the cytokine balance shift towards Th2 dominance. These suppressive actions of PSP involved the MAPKp38 and STAT5 pathways. These findings refine our understanding of the effects of PSP on T lymphocytes and its adjuvant properties with the immunosuppressant ciclosporin for possible control of autoimmune diseases.

PMID: 18957170 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/18957170

Protoplast fusion betweenLentinula edodes andCoriolus versicolor.

Kim C, Choi EC, Kim BK.

Department of Microbial Chemistry, College of Pharmacy, Seoul National University, 151-742, Seoul, Korea.

Abstract

Protoplast fusion between isoleucine-, arginine- and thymidine-requiring auxotroph (lle, Arg, Thy) ofLentinula edodes and arginine-requiring auxotroph (Arg) of Coriolus versicolor has been achieved using 30% polyethylene glycol (M.W. 4000) in 10 mMCaCl(2)-glycine solution (pH 8.0). Fusion hybrids were selected in the 0.6 M sucrose supplemented minimal media on the basis of nutritional complementation with fusion frequency of 7.4×10(-6). The hybrids included both parental and non-parental types in colony morphology, growth rate and isozyme patterns. We succeeded inter-order protoplast fusion between the auxotrophs ofLentinula edodes and Coriolus versicolor overcoming the natural barriers of incompatibility. We examined the characteristics of the hybrids and clarified the fusion process using electron microscopy.

PMID: 18982488 [PubMed – in process]

http://www.ncbi.nlm.nih.gov/pubmed/18982488

Three-dimensional x-ray imaging and analysis of fungi on and in wood.

Van den Bulcke J, Boone M, Van Acker J, Van Hoorebeke L.

Laboratory of Wood Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium. Jan.VandenBulcke@UGent.be

Abstract

As wood is prone to fungal degradation, fundamental research is necessary to increase our knowledge aiming at product improvement. Several imaging modalities are capable of visualizing fungi, but the X-ray equipment presented in this article can envisage fungal mycelium in wood nondestructively in three dimensions with submicron resolution. Four types of wood subjected to the action of the white rot fungus Coriolus versicolor (Linnaeus) Quélet (CTB 863 A) were scanned using an X-ray-based approach. Comparison of wood volumes before and after fungal exposure, segmented manually or semiautomatically, showed the presence of the fungal mass on and in the wood samples and therefore demonstrated the usefulness of computed X-ray tomography for mycological and wood research. Further improvements to the experimental setup are necessary to resolve individual hyphae and enhance segmentation.

PMID: 19709462 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/19709462