Peroxidase-catalyzed color removal from bleach plant effluent.

Paice MG, Jurasek L.

Pulp and Paper Research Institute of Canada, 570 St. John’s Boulevard, Pointe Claire, Quebec, Canada H9R 3J9.

Abstract

Effluent from the caustic extraction stage of a bleach plant is highly colored due to the presence of dissolved products from lignin chlorination and oxidation. Color removal from the effluent by hydrogen peroxide at neutral pH was catalyzed by addition of horseradish peroxidase. The catalysis with peroxidase (20 mg/L) was observed over a wide range of peroxide concentrations (0.1mM-500mM), but the largest effect was between 1mM and 100mM. The pH optimum for catalysis was around 5.0, while the basal rate of noncatalyzed peroxide color removal simply increased with pH within the range tested (3-10). Peroxidase catalysis at pH 7.6 reached a maximum at 40 degrees C in 4 h assays with 10mM peroxide, and disappeared above 60 degrees C. Compared with mycelial color removal by Coriolus versicolor, the rate of color removal by peroxide plus peroxidase was initially faster (first 4 h), but the extent of color removal after 48 h was higher with the fungal treatment. Further addition of peroxidase to the enzyme-treated effluent did not produce additional catalysis. Thus, the peroxide/peroxidase system did not fully represent the metabolic route used by the fungus.

PMID: 18553342 [PubMed – in process]

http://www.ncbi.nlm.nih.gov/pubmed/18553342

Leave a Reply